

	
	
	
	
	
	
	

JavaScript:	The	Ultimate	Crash	Course
Learning	JavaScript	within	a	Day	with
New	Approach	for	Faster	Programming

(Save	Time	and	Effort)
	

By:
JM	Shepal

	
Published	By	Shepal	Publishing,	All	Rights	Reserved,

Copyright	2016

New	York

Introduction
	

In	this	era	of	leading	technology,	being	able	to	use	a	computer	is	essential	for	anyone	who
wants	to	accomplish	something	in	their	lives.	However,	simply	putting	a	computer	on	and
sending	email	is	not	enough.	The	basic	computer	skills	are	inadequate	in	most	industries,
therefore	one	has	to	pursue	more	skills	and	knowledge	in	the	use	of	computers	in	order	to
be	able	to	do	a	lot	more.

It	 is	for	 this	reason	that	programming	languages	are	becoming	very	important	every	day
for	 people	 from	 all	 walks	 of	 life.	 It	 would	 not	 be	 a	 surprise	 for	 people	 to	 require	 a
qualification	 or	 understanding	 of	 programming,	 in	 all	 the	 industries	 that	 support	 the
economy.	 That	 is	 why	 a	 lot	 of	 people	 are	 looking	 into	 more	 ways	 to	 master	 a	 few
programming	skills	and	ensure	they	have	an	edge	in	the	employment	sector.

Learning	 programming	 is	 known	 as	 mastering	 code.	 There	 are	 range	 of	 programming
languages	 to	 learn,	 though	 it	 is	 important	 to	 at	 least	 master	 one	 language	 for	 better
opportunities	for	you	in	life.

JavaScript	is	an	exceptional	programming	language;	it	is	easy	to	master,	simple	yet	very
powerful.	This	is	the	language	that	will	put	you	in	a	good	position	in	any	sector	that	you
work	in.	This	programming	language	is	great	to	use	on	your	own	personal	projects.	This
eBook	provides	you	with	a	chance	to	learn	this	amazing	programming	language	in	just	a
day!

	

	

	

	

	

	

	

	

	

	

	

Chapter	1:	JavaScript	Basics
	

JavaScript	 is	 a	 programming	 language	 that	 is	 rich	 and	 expressive.	 It	was	 established	 in
1991	 by	 Sun	Microsystems,	 from	 a	 team	 that	was	made	 of	 three	 individuals	who	were
Mike	Sheridan,	Patrick	Naughton	and	James	Gosling.	It	used	to	be	called	Oak,	and	then	it
was	 called	Green	 and	 in	1995,	 the	name	 Java	was	given,	 having	being	named	after	 the
coffee.	The	basic	concepts	of	JavaScript	are	the	most	important	things	a	beginner	needs	to
master.	You	should	also	know	some	of	the	pitfalls	that	have	befallen	people	who	have	not
used	this	expressive	programing	language	before	so	that	you	can	master	it	well	and	start
programming	like	an	expert.

JavaScript	is	a	great	place	to	start	learning	about	programming,	and	with	this	knowledge,
you	will	find	it	easier	to	master	different	programming	languages.	To	begin	with,	we	will
explore	the	meaning	of	Syntax.	Here	are	some	syntax	basics	that	should	get	you	started:

	

Syntax	Basics
JavaScript	 syntax	 refers	 to	a	 set	of	 rules	 that	define	a	 JavaScript	program	 that	has	been
well	structured.	Some	of	the	important	syntax	that	you	need	to	learn	as	you	get	started	in
JavaScript	 programming	 include	 statements,	 variable	 naming,	 and	 white	 space	 among
others.	 First	 of	 all,	 you	 need	 to	 know	 what	 a	 computer	 program.	 At	 its	 most	 basic,	 a
computer	program	is	the	list	of	instructions	that	tell	a	computer	what	it	must	execute.	In	a
programming	language	these	program	instructions	are	what	we	will	call	statements.

	

Case	sensitivity:	JavaScript	 is	a	case	sensitive	programming	language.	You	will	have	 to
start	 the	 name	 of	 a	 constructor	with	 a	 capital	 letter	 then	 the	 name	 of	 a	 function	with	 a
lower-case	 letter.	This	 is	 important	 to	 remember	 as	 some	other	 programming	 languages
are	not	case	sensitive,	meaning	that	you	have	a	different	experience	using	them.

	

Whitespace:	These	are	the	spaces,	the	tabs	and	the	newlines	that	are	used	outside	of	string
constants.	String	constants	can	be	identified	as	some	letters	and	symbols	that	are	used	to
create	 code	 in	 JavaScript	 programming	 language.	 Whitespace	 in	 JavaScript	 is	 very
significant	 and	 it	 can	 directly	 impact	 semantics,	which	 is	 not	 the	 case	with	 some	 other
programming	languages	like	C.

	

Semicolon:	 Statements	 in	 JavaScript	 are	 usually	 separated	 by	 semicolons.	 There	 is	 a
technique	 in	 JavaScript	 called	 Automatic	 Semicolon	 Insertion.	 This	 means	 that	 some
statements	 that	have	been	well	formed	after	a	new	line	has	been	parsed	will	be	taken	as
complete,	just	the	same	way	they	would	be	considered	if	the	semicolon	were	inserted	just
before	 the	 newline.	 You	 can	 opt	 for	 statements	 that	 terminate	 semicolons	 explicitly	 in
order	to	reduce	the	unintended	effects	of	the	automatic	semicolon	insertion.

	

Here	is	an	example	of	the	semicolon	use:

var	a	=	8;

var	b	=	9;

var	c	=	a	+	b;

	

JavaScript	Statements

In	 JavaScript,	 statements	 have	 several	 components	 which	 include:	 Values,	 Operators,
Expressions,	Keywords,	and	Comments.

Values:	 in	 JavaScript	 syntax,	 you	will	 get	 to	know	about	 two	 types	of	 values:	 the	 fixed
values	 and	 the	 variable	 values.	 The	 fixed	 values	 are	 called	 the	 literals	 and	 the	 variable
values	are	what	we	call	variables.

The	most	important	rules	for	writing	JavaScript	fixed	values/literals	are:

-									Numbers	can	be	written	with	or	without	decimals.	Example:

10.50

1001

-	 	 	 	 	 	 	 	 	 Strings	 are	 a	 text	 and	 they	 are	 written	 within	 double	 or	 a	 single	 quote.
Example:

“Alpha	Delta”

‘Alpha	Delta’

JavaScript	 variables	 on	 the	 other	 hand,	 are	 used	 to	 store	 data	 values,	 just	 like	 in	 other
programming	languages.	The	var	keyword	will	 therefore	be	used	 to	declare	variables	 in
the	programming.	An	equal	sign	will	be	used	 to	assign	a	value	 to	a	variable.	Here	 is	an
example:

var	a;

a	=	8;

Here	is	an	example	of	a	simple	variable	declaration:

var	foo	=	‘hello	world’;

The	 whitespace	 does	 not	 have	 significant	 meaning	 outside	 the	 quotation	 marks	 as
illustrated:

var	foo	=	‘hello	world’;

The	parenthesis	will	indicate	precedence	as	shown:

3	*	2	+	6;				//	returns	12;	as	first	you	have	multiplication

3	*	(5	+	3);		//	returns	24;	as	first	you	have	addition

Tabs	will	have	no	meaning	at	all	but	they	will	enhance	readability:

var	foo	=	function(){

console.log(‘hello’);

};

	

JavaScript	expressions

An	expression	in	JavaScript	will	be	used	to	refer	to	the	combination	of	values,	variables
and	operators,	all	of	which	will	compute	to	a	certain	value.	The	end	computation	will	be
called	an	evaluation.	Here	is	an	example	of	a	simple	expression:

2	*	10	evaluates	to	20:

2	*	10

Expressions	do	contain	variable	values	as	well,	a	*	10.

The	values	used	in	such	expressions	can	be	of	various	types	like	say	numbers	and	strings.
“Alpha”	+	”	”	+	“Delta”,	evaluates	to	“Alpha	Delta”:	can	be	illustrated	as:

“Alpha”	+	”	”	+	“Delta”

	

JavaScript	keywords

These	are	used	to	identify	the	actions	that	are	to	be	performed.	The	variable	keyword	will
be	used	to	tell	the	browser	to	create	a	new	variable.	Example:

var	a	=	8	+	9;

var	b	=	a	*	10;

	

Comments

First	of	all,	you	need	to	realize	that	not	all	JavaScript	statements	end	up	being	executed.
The	code	that	appears	after	double	slashes	//	or	in	between	/*	and	*/	will	be	treated	as	a
comment.	The	comments	are	supposed	to	be	ignored,	not	to	be	executed.	Example:

var	a	=	8;			//	I	will	be	executed

	

//	var	a	=	9;			I	will	NOT	be	executed

	

Identifiers

Identifiers	 are	 basically	 names.	 In	 JavaScript,	 they	 will	 be	 used	 to	 name	 variables,
keywords,	 functions	 and	 labels.	Legal	 names	behave	 the	 same	 and	 the	 rules	 remain	 the
same	 in	 all	 programming	 languages.	 In	 JavaScript,	 the	 very	 first	 character	 has	 to	 be	 a

letter,	 an	 underscore	 (_),	 or	 a	 dollar	 sign	 ($).	 The	 characters	 that	 will	 follow	 can	 be
anything	between	 letters,	 digits,	 underscores,	 or	dollar	 signs.	Note	 that	 numbers	 are	not
allowed	as	 first	characters.	This	makes	 it	easy	 for	one	 to	distinguish	between	 identifiers
and	numbers	with	ease	in	JavaScript.

	

	

	

	

	

	

	

	

	

	

	

Chapter	2:	JavaScript	Basic	Operators
	

JavaScript	basic	operators	are	used	 to	manipulate	different	values	 in	your	programming.
JavaScript	 uses	 an	 assignment	 operator,	 an	 equal	 sign	 in	 order	 to	 assign	 values	 to	 a
variable.	An	illustration	is	as	below:

var	a	=	8;

var	b	=	9;

Arithmetic	operators	on	 the	other	hand	are	used	 to	compute	values.	These	are	given	 the
signs	+	-	*	/.	Below	is	an	example:

(8	+	9)	*	17

These	includes	division	and	multiplication,	for	example:

5	*	6;

5	/	6;

And	decrementing	and	incrementing:

var	x	=	6;

var	y	=	++x;		//	pre-increment:		y	equals	5;	x	equals	6

var	z	=	x++;		//	post-increment:	z	equals	5;	x	equals	6

Concatenation	will	also	be	useful.	Here	is	an	example:

var	foo	=	‘hello’;

var	bar	=	‘world’;

console.log(foo	+	‘	‘	+	bar);	//	‘hello	world’

	

Numbers	and	Strings	Operations

In	 JavaScript,	 the	 behavior	 of	 strings	 and	numbers	 is	 often	very	 different	manner	when
compared	to	how	they	behave	with	other	programming	languages.	It	is	therefore	important
to	 understand	 each	 step	 carefully	 to	 be	 able	 to	 operate	 them	with	 ease	 when	 you	 start
programming:

Addition	vs.	concatenation

Here	is	an	example	of	how	additions	and	concatenations	happen	on	numbers	and	strings:

var	foo	=	5;

var	bar	=	‘6’;

console.log(foo	+	bar);		//	56.	uh	oh

How	to	force	a	string	to	behave	like	numbers:

var	foo	=	5;

var	bar	=	‘6’;

//	coerce	strings	towards	a	number

console.log(foo	+	Number(bar));

When	a	number	constructor	is	identified	as	a	function	as	it	is	illustrated	above,	it	will	have
the	ability	 to	cast	 its	argument	 to	numerical	 form.	The	unary	plus	operator	carries	out	a
similar	function,	therefore	it	can	also	be	used.	Here	is	an	illustration:

console.log(foo	+	+bar);

	

Logical	operators

The	 logical	 operators	 in	 JavaScript	make	 it	 possible	 to	 gauge	 a	 sequence	 of	 operations
using	AND	as	well	as	OR	operations.	Look	at	the	illustration	below:

var	foo	=	5;

var	bar	=	0;

var	baz	=	6;

foo	||	bar;			//	takes	back	5,	that	is	true

bar	||	foo;			//	takes	back	5,	that	is	true

foo	&&	bar;			//	takes	back	0,	that	is	false

foo	&&	baz;			//	takes	back	6,	that	is	true

baz	&&	foo;			//	takes	back	5,	that	is	true

From	the	illustration	above:

-														The	operator	//	brings	back	the	value	of	the	initial	operation.	Should	it	occur	that
none	of	the	operations	is	true,	the	last	of	the	two	operations	will	be	returned.

	

-														The	&&	operator	brings	the	value	of	the	primary	false	operation	or	that	of	the
final	operation	if	both	of	the	operations	were	true.

Sometimes	 logical	operations	are	used	 for	 the	 flow	control	 rather	 than	making	use	of	 if
statements	by	some	developers.	See	the	example	below:

//	do	a	thing	with	foo	if	foo	is	true

foo	&&	do	something(foo);

	

//	set	bar	to	bax	if	bax	is	true;

//	or	else,	set	it	to	the	take	back

//	value	of==for	createBar()

var	bar	=	bax	||	createBar();

The	above	is	a	different	kind	of	style,	that	is	elegant	and	quite	pleasant	but	it	is	not	easy	to
read,	 particularly	 for	 those	 without	 experience.	 Only	 after	 advancing	 the	 skills	 in
JavaScript	can	a	beginner	be	able	to	read	that.

	

Note:	you	need	to	know	which	kinds	of	values	are	truth	and	which	ones	are	false	so	as	to
use	flow	control	effectively	all	the	time.	There	are	times	when	values	that	look	like	they
should	evaluate	in	one	way	evaluate	in	a	different	way	instead.	Values	that	evaluate	to	true
are	illustrated	as:

‘0’;

‘any	string’;

[];		//	an	empty	array

{};		//	an	empty	object

1;			//	any	non-zero	number

And	those	that	evaluate	to	the	false	are	illustrated	as:

0;

”;		//	an	empty	string

NaN;	//	JavaScript’s	“not-a-number”	variable

null;

undefined;		//	be	careful	—	undefined	can	be	redefined!

	

	

The	conditional	code

This	 is	only	applicable	when	you	want	 to	 run	a	 large	amount	of	code	as	 long	as	certain
conditions	apply.	Here,	you	will	use	Flow	control	 through	if	and	else	blocks.	Here	 is	an
example	in	a	flow	control:

var	foo	=	right;

var	bar	=	wrong;

	

if	(bar)	{

//	this	code	shall	never	run

console.log(‘hello!’);

}

if	(bar)	{

//	this	code	shan’t	run

}	or	{

if	(foo)	{

//	this	code	will	run

}	else	{

//	this	code	would	run	if	foo	and	bar	were	both	wrong

}

}

Always	remember	that	use	of	curly	braces	will	help	you	in	the	creation	of	more	readable
codes,	 even	when	 they	 are	 not	 really	 necessary	 with	 single-line	 if	 statements.	 You	 can
therefore	use	them	as	much	as	you	want	for	better	results.	Also,	avoid	defining	functions
using	the	a	name	which	is	the	same	many	times	within	different	if/else	blocks.	This	may
prevent	you	from	achieving	the	desired	results.

	

	

	

	

	

Chapter	3:	JavaScript	Loops
	

Loops	in	JavaScript’s	enable	a	programmer	to	quickly	and	easily	do	something	repeatedly.
A	loop	 is	basically	a	computerized	version	of	having	 to	do	something	several	 times	and
another	 thing	several	more	 times.	If	you	want	 to	 take	eight	steps	 to	 the	east,	 this	can	be
expressed	as	below	in	JavaScript:

var	step;

for	(step	=	0;	step	<	8;	step++)	{

		//	Runs	8	times,	with	values	of	step	0	through	7.

		console.log(‘Walking	east	one	step’);

}

You	will	learn	about	several	kinds	of	loops	in	this	programming	language,	but	one	thing
for	sure	is	that	they	all	do	the	same	thing,	which	is	repeating	the	same	action	a	number	of
times.	 The	 number	 of	 times	 can	 be	 zero.	What	 the	 different	 types	 of	 loop	mechanisms
offer	are	different	ways	to	determine	the	start	point	and	the	end	points	of	the	loop.	There
are	various	situations	that	will	be	more	easily	served	by	one	type	of	loop	compared	to	the
others.

JavaScript	provides	a	variety	statements	that	will	be	used	for	loops/.	These	are:

1.	 For	statement:

This	 statement	 will	 repeat	 until	 a	 specified	 condition	 evaluates	 to	 a	 false.	 Here	 is	 an	 -
example	statement:

for	([initialExpression];	[condition];	[incrementExpression])

		statement

The	results	of	a	for	loop	execution	are:

The	initializing	expression,	if	any,	will	be	executed.

The	 condition	 expression	will	 be	 evaluated.	 If	 the	 value	 of	 condition	 is	 true,	 the
loop	statement	will	execute	 it.	 If	 the	value	of	condition	 is	 false,	 the	 for	 loop	will
terminate	it.	If	the	condition	expression	is	totally	omitted,	the	condition	will	then	be
assumed	to	be	true.

The	 statement	 executes.	 If	 you	want	 to	 execute	multiple	 statements,	 use	 a	 block
statement	({	…	})	in	order	to	group	those	statements.

The	update	expression,	which	is	incrementExpression,	will	execute	if	it	 is	present
then	the	control	returns	to	step	2.

2.	 The	do…while	statement

This	kind	of	 statement	will	 repeat	until	 a	 specified	condition	evaluates	 to	 false.	 	This	 is

how	it	looks:

do

		statement

while	(condition);

your	 statements	 will	 be	 executed	 once	 before	 the	 condition	 is	 checked.	 If	 you	want	 to
execute	more	than	one	statements,	you	use	a	block	statement	({	…	})	so	as	to	group	those
statements.	 If	 the	 conditions	 turns	 out	 to	 be	 true,	 the	 statement	will	 execute	 again.	The
condition	 should	be	 checked	 after	 every	 execution.	 If	 you	 find	 it	 false,	 the	 execution	 is
stopped	and	total	control	is	now	passed	on	to	the	statement	that	follows	do…while.	Here
is	an	example:

do	{

		i	+=	1;

		console.log(i);

}	while	(i	<	5);

	

3.	 The	while	statement

This	 statement	will	 execute	 its	 statements	 as	 long	 as	 a	 specified	 condition	 evaluates	 to
true.	This	is	how	a	while	statement	will	look	like:

while	(condition)

		statement

If	 the	 condition	 evaluates	 to	 false,	 the	 statement	 in	 that	 loop	 stops	 executing	 and	 the
control	now	is	passed	to	the	statement	that	follows	the	loop.

You	have	to	test	the	condition	before	the	statement	in	the	loop	is	executed.	If	the	results
are	true,	the	statement	is	executed	and	the	condition	is	tested	once	more.	This	is	done	until
the	condition	returns	false.

In	order	to	execute	multiple	statements,	use	a	block	statement	({	…	})so	as	to	group	those
statements.	Example:

n	=	0;

x	=	0;

while	(n	<	3)	{

		n++;

		x	+=	n;

}

4.	 The	label	statement

This	 statement	 will	 provide	 a	 statement	 with	 an	 identifier	 that	 will	 let	 you	 refer	 to	 it
elsewhere	 in	your	program.	You	can	use	 the	 label	 statement	 in	order	 to	 identify	a	 loop,
then	use	the	break	or	the	continue	statements	in	order	to	indicate	whether	a	program	will
interrupt	the	loop	or	it	will	continue	its	execution.	This	so	how	the	label	statement	looks
like:

label	:

statement

Where	the	value	of	the	label	can	be	any	JavaScript	identifier	that	is	not	entirely	a	reserved
word	and	 the	 statement	 that	you	 identify	with	 the	 label	 statement	can	be	any	statement.
Here	is	an	example	of	a	label	markLoop	identifying	a	while	loop:

markLoop:

while	(theMark	==	true)	{

doSomething();

}

5.	 Break	statement

The	 break	 statement	 is	 used	 to	 terminate	 a	 loop,	 switch	 or	 in	 conjunction	with	 a	 label
statement.	When	 it	 is	 used	 without	 the	 label,	 it	 will	 terminate	 the	 innermost	 enclosing
while,	do..while,	for,	or	switch	immediately,	then	transfer	the	control	to	the	statement	that
follows.	When	break	is	used	with	label	on	the	other	hand,	it	will	 terminate	the	specified
labeled	statement.	This	is	how	the	break	statement	looks	like:

break;

break	label;

Where	the	first	form	of	the	syntax	terminates	the	innermost	enclosing	loop	or	switch,	the
second	form	of	the	syntax	terminates	the	specified	enclosing	label	statement.	Example:

for	(i	=	0;	i	<	a.length;	i++)	{

		if	(a[i]	==	theValue)	{

break;

		}

}

6.	 Continue	statement

This	is	the	statement	that	will	be	used	to	restart	a	while,	do..while,	for	or	label	statements.
When	 the	 statement	 is	used	without	a	 label,	 it	will	 terminate	 the	current	 iteration	of	 the
innermost	 enclosing	 while,	 do-while,	 or	 for	 statement	 and	 continue	 executing	 the	 loop
with	the	next	iteration.	This	contrasts	the	working	of	the	break	statement	in	that	continue
does	not	terminate	the	execution	of	the	loop	entirely.	When	used	in	a	while	loop,	it	jumps
back	to	the	condition	and	in	a	for	loop,	it	jumps	to	the	increment-expression.	This	is	how

its	syntax	looks	like:

continue;

continue	label;

Here	is	an	example	of	a	while	loop	with	a	continue	statement	that	executes	when	the	value
of	i	is	three.	In	the	example,	n	takes	on	the	values	one,	three,	seven,	and	twelve:

i	=	0;

n	=	0;

while	(i	<	5)	{

		i++;

		if	(i	==	3)	{

continue;

		}

		n	+=	i;

}

7.	 for…in	statement

This	statement	iterates	a	specific	variable	over	all	the	enumerable	properties	of	an	object.
Its	syntax	is	as	below:

for	(variable	in	object)	{

		statements

}

8.	 for…of	statement

This	 is	 the	 statement	 that	 will	 create	 a	 loop	 that	 will	 Iterate	 over	 objects	 that	 can	 be
iterated	 for	 instance	 Array,	 Map,	 Set,	 arguments	 object	 among	 many.	 It	 will	 invoke	 a
custom	iteration	hook	with	statements	that	are	to	be	executed	for	the	value	of	each	distinct
property.	Its	syntax	will	look	like:

for	(variable	of	object)	{

		statement

}

	

	

	

	

	

	

	

	

Chapter	4:	JavaScript	Functions	and	Scope
	

Functions	 in	 JavaScript	 contain	 blocks	 of	 code	which	 needs	 to	 be	 executed	 repeatedly.
Functions	here	can	take	zero	or	more	arguments,	and	they	can	return	a	value	if	they	opt	to.
There	is	more	than	one	way	in	which	you	can	create	functions	in	JavaScript:

-														Function	declaration:	function	foo()	{	/*	do	something	*/	}

-														A	named	function	expression:	var	foo	=	function()	{	/*	do	something	*/	}

Here	are	examples	of	different	types	of	functions:

i)														A	simple	function	will	be	illustrated	as:

var	greet	=	function(person,	greeting)	{

var	text	=	greeting	+	‘,	‘	+	person;

console.log(text);

};

greet(‘Rebecca’,	‘Hello’);

	

ii)														A	function	that	returns	a	value	will	be	illustrated	as:

var	greet	=	function(person,	greeting)	{

var	text	=	greeting	+	‘,	‘	+	person;

return	text;

};

console.log(greet(‘Richard’,‘hello’));

	

iii)														A	function	that	returns	another	function	will	be	illustrated	as:

var	greet	=	function(person,	greeting)	{

var	text	=	greeting	+	‘,	‘	+	person;

return	function()	{	console.log(text);	};

};

	

	

var	greeting	=	greet(‘Richard’,	‘Hello’);

greeting();

	

The	Self-Executing	Anonymous	Functions

This	is	a	common	pattern	in	JavaScript	 today.	The	pattern	creates	a	function	expression,
then	immediately	executes	the	function.	This	is	a	pattern	that	will	be	very	useful	if	you	do
not	 want	 to	 create	 a	 mess	 in	 the	 global	 namespace	 with	 your	 code.	 Note	 that	 all	 the
variables	that	will	be	declared	inside	of	the	function	will	be	visible	on	the	outside.	This	is
how	the	self-executing	anonymous	function	will	look	like:

(function(){

var	foo	=	‘Hello	world’;

})();

console.log(foo);			//	undefined!

	

JavaScript	functions	as	arguments

Functions	are	very	important	in	JavaScript;	they	are	treated	as	first-class	citizens	and	this
means	that	they	can	be	assigned	to	variables	with	ease	or	they	can	be	passed	over	to	the
other	 functions	 as	 arguments.	 The	 syntax	 for	 passing	 an	 anonymous	 function	 as	 an
argument	will	be:

var	myFn	=	function(fn)	{

var	result	=	fn();

console.log(result);

};

myFn(function()	{	return	‘hello	world’;	});			//	logs	‘hello	world’

while	the	syntax	for	passing	a	named	function	as	an	argument	will	be:

var	myFn	=	function(fn)	{

var	result	=	fn();

console.log(result);

};

var	myOtherFn	=	function()	{

return	‘hello	world’;

};

myFn(myOtherFn);			//	logs	‘hello	world’

	

Testing

There	 is	 a	way	one	can	 test	 the	 type	of	variable	 in	 JavaScript.	This	 is	 shown	by	use	of
typeof	operator	in	order	to	determine	the	type	of	a	specific	value.	Below	is	an	illustration

of	how	one	can	test	the	type	of	various	variables	in	programming:

var	myFunction	=	function()	{

console.log(‘hello’);

};

	

var	myObject	=	{

foo	:	‘bar’

};

	

var	myArray	=	[‘a’,	‘b’,	‘c’];

	

var	myString	=	‘hello’;

	

var	myNumber	=	3;

	

typeof	myFunction;			//	takes	back	‘function’

typeof	myObject;					//	takes	back	‘object’

typeof	myArray;						//	takes	back	‘object’	—	careful!

typeof	myString;					//	takes	back	‘string’;

typeof	myNumber;					//	takes	back	‘number’

	

typeof	null;									//	takes	back	‘object’	—	careful!

	

	

if	(myArray.push	&&	myArray.slice	&&	myArray.join)	{

//	probably	an	array

//	(this	is	called	“duck	typing”)

}

	

if	(Object.prototype.toString.call(myArray)	===	‘[object	Array]’)	{

//	Definitely	an	array!

//	This	is	widely	considered	as	the	most	robust	way

//	to	determine	if	a	specific	value	is	an	Array.

Scope

Scope	is	basically	a	variable	that	is	available	in	a	certain	code	at	a	given	time.	If	you	are
unable	to	understand	scope,	you	will	have	constant	issues	with	debugging,	therefore	this	is
very	 important.	When	you	declare	a	variable	 inside	a	function	using	 the	var	keyword,	 it
will	only	be	available	to	the	code	inside	of	that	function	and	the	code	outside	the	function
will	not	be	able	to	access	the	variable.	Again,	functions	that	have	been	defined	inside	that
function	will	be	able	to	access	the	declared	variable.

Those	variables	 that	will	 be	declared	 inside	 a	 function	without	 the	var	keyword	 are	not
local	to	the	function	as	this	means	that	JavaScript	will	go	back	the	scope	chain	up	to	the
window	scope	 in	order	 to	 find	 the	point	where	 the	variable	was	defined	at	 first.	 If	 there
was	no	declaration	at	the	beginning,	the	variable	will	then	be	declared	in	the	global	scope,
and	this	can	have	great	expected	consequences.

The	 example	 below	 shows	 functions	 that	 have	 access	 to	 variables	 defined	 in	 the	 same
scope:

var	foo	=	‘hello’;

	

var	sayHello	=	function()	{

console.log(foo);

};

sayHello();									//	logs	‘hello’

console.log(foo);			//	also	logs	‘hello’

This	example	shows	that	a	code	outside	 the	scope	 in	which	a	variable	was	defined	does
not	have	access	to	the	variable

var	sayHello	=	function()	{

var	foo	=	‘hello’;

console.log(foo);

};

sayHello();									//	logs	‘hello’

console.log(foo);			//	doesn’t	log	anything

	

	

	

	

	

	

	

	

Chapter	5:	JavaScript	Features
	

JavaScript	 is	 a	 very	 powerful	 programming	 language.	 It	 is	 quite	 popular	 as	 a	 client
scripting	 language	 for	 different	web	browsers.	 It	 can	be	used	 in	 any	web	 application	 in
order	to	implement	simple	but	very	important	features,	roller	of	images.	It	has	been	used
for	many	years	now	to	add	beautiful	effects	to	web	pages	because	of	its	powerful	features,
and	 this	 is	something	 that	makes	 it	one	of	 the	best	programming	languages	 in	 the	entire
world	today.	Here	are	some	of	the	best	features	that	should	prompt	you	to	learn	this	great
programming	language:

	

JavaScript’s	browser	support

With	 JavaScript,	 one	 does	 not	 need	 to	 install	 flash	 plugin	 in	 their	 browser,	 like	 it	 is
required	when	one	wants	 to	access	any	 flash	content.	This	 is	because	all	browsers	have
fully	 accepted	 JavaScript	 as	 their	 main	 scripting	 language,	 therefore	 they	 provide	 an
integrated	support	for	it.	What	a	programmer	would	have	to	do	is	just	to	handle	some	of
the	tasks	that	depend	on	DOM	of	different	browsers	properly	and	you	will	be	free	to	use
JavaScript	on	your	browser.

	

JavaScript	as	a	functional	programming	language

Programmers	 using	 JavaScript	 are	 at	 liberty	 to	 code	 in	 a	 functional	 programming	 style,
which	 is	 easy	 and	more	 exciting	 than	 any	 other	 style.	 This	 is	 because	 of	 a	 number	 of
reasons.	A	function	in	JavaScript	can	be	assigned	to	variables,	 just	 the	same	way	as	any
other	type	of	data.	A	function	can	also	accept	another	function	as	its	parameter.	It	can	also
return	a	function.	You	can	also	have	functions	that	do	not	have	any	names	as	well.	This	is
the	ability	that	many	programmers	would	love	to	enjoy	as	they	work.

	

JavaScript	can	be	used	on	both	the	client	and	on	the	server	side

JavaScript	 has	 access	 to	 the	 document	 model	 object	 of	 any	 browser	 therefore	 one	 can
easily	 change	 the	 structure	 of	 web	 pages	 at	 runtime.	 This	 is	 what	 gives	 users	 of	 the
programming	language	more	control	over	their	browsers.	You	can	use	the	language	to	add
different	effects	to	webpages.	The	programming	language	can	also	be	used	on	the	server
side	as	well,	for	instance	it	is	used	in	Alfresco	to	create	web	scripts.	This	is	what	makes	it
very	easy	for	a	programmer	to	add	custom	tasks	to	Alfresco.

	

Its	ability	to	detect	the	user’s	browser	and	OS

This	 is	 something	 that	will	help	a	programmer	 to	be	able	 to	perform	operations	 that	are
dependent	on	the	platform	when	it	is	required.

The	ability	 to	detect	 the	user’s	browser	and	OS	allows	your	 script	 to	perform	platform-

dependent	operations,	if	necessary.

	

JavaScript’s	support	for	objects

JavaScript	is	a	programing	language	that	is	oriented	by	objects	but	it	handles	objects	and
inheritance	in	a	much	different	way	when	compared	to	how	other	programming	languages
that	 are	 object	 oriented	 do.	 What	 it	 does	 is	 that	 it	 offers	 immense	 support	 to	 object
oriented	 concepts	 but	 then	 it	 remains	 simple	 to	 learn	 and	 use.	 That	 is	 why	 this
programming	 language	 can	 be	 used	 to	 execute	 both	 the	 simple	 tasks	 and	 the	 complex
tasks.	This	is	also	what	has	enables	it	 to	stay	top	in	the	list	as	one	of	the	most	preferred
programming	 languages	 in	 the	 industry	 today.	 It	 is	 now	 the	 best	 language	 to	 learn	 for
people	who	are	interested	in	computer	programming	due	to	its	support	for	object	oriented
concepts	and	function	concepts.	It	is	also	easy	to	use	and	you	only	need	a	browser	and	a
text	editor	to	enjoy	what	it	has	to	offer.

	
	

	

	

	

	

	

	

	

	

Conclusion
	

Many	 people	 believe	 that	 one	 has	 to	 actually	 go	 back	 to	 school	 in	 order	 to	 learn	 a
programming	language	and	other	computer	skills,	but	 this	 is	not	 true	at	all.	The	 internet
has	brought	a	 lot	of	possibilities	 in	our	 lives	and	so	much	information	 is	out	 there.	This
eBook	can	get	you	started	in	JavaScript	without	necessarily	attending	classes,	and	you	can
learn	so	much	more	with	time	to	program	like	an	expert.

Other	people	believe	that	programming	languages	are	meant	for	certain	kinds	of	people,
which	 is	also	a	myth.	JavaScript	 is	a	programming	 language	 that	can	be	 learned	by	any
kind	 of	 person,	 for	 any	 reason	 at	 all.	You	 do	 not	 have	 to	 be	 a	mathematic	 genius	 or	 a
science	guru	to	be	able	to	program	like	an	expert.	This	 is	something	that	anyone	can	do
with	so	much	ease.	Like	you	have	already	seen,	it	is	a	very	easy	programming	language	to
learn,	which	opens	opportunities	for	all	kinds	of	people.

An	effective	way	 to	 learn	programming	 language	 is	 to	 learn	 the	basics,	 then	practice	as
much	as	you	can.	Practice	 is	what	makes	one	a	pro	and	coding	gets	better	with	a	 lot	of
practice.	You	have	to	dedicate	a	considerable	amount	of	time	to	it	as	well,	for	the	skills	to
be	 well	 mastered.	 Check	 out	 what	 other	 people	 are	 doing	 and	 try	 new	 ways	 of
programming	and	see	how	much	you	will	have	achieved	in	a	short	period	of	time.

